锂电池知识

电池知识

锂离子、磷酸铁锂、锰酸锂、新能源

解密锂电池中碳酸丙烯酯(PC)和碳酸乙烯酯(EC)的差异

2021-04-27 ryder

锂电池是通过锂离子在含锂过渡金属氧化物和贫锂石墨材料之间的嵌入和脱出实现能量的储存和释放。石墨材料之所以能实今朝锂电池中的使用全靠电解液在石墨表面分析形成的离子可导、电子不导的固体电解质界面(SEI)膜。这层保护膜将还原稳定性远低于嵌锂电位(0.01V)的电解液与石墨电极隔离,从而保证在嵌锂电位下电解液不发生还原分析,使得锂离子在石墨材料中可逆嵌脱。


如此紧要的SEI膜是要怎么样形成的?为什么有些电解液分析产物可以形成稳定的SEI膜,而有些电解液却会在高于嵌锂的电位下继续发生还原分析,最终导致石墨层结构坍塌?这种界面行为的差异最典型的应当是锂电池发展史上众所周知的“碳酸丙烯酯(PC)和碳酸乙烯酯(EC)的差异”。PC在嵌锂电位以先(~0.7V)发生继续的还原分析,最终使得石墨结构坍塌,无法正常嵌脱锂。而EC,其分子结构仅比PC少一个甲基,却在略高于0.7V电位下发生分析形成一层稳定的SEI膜,从而抑制电解液在更低电位的分析,使得锂离子可在石墨材料中正常地嵌入和脱出。在过去的二十余年时间里,有部分的科学家尝试去揭示PC和EC行为差异的原由,但至今没有一种机理模型可以让人完全信服。例如Zhuang等人提出,PC和EC的差异是由于PC在电极表面经历双电子还原,笔直生成Li2CO3和丙烯气体,后者导致石墨层结构破坏。而EC则经历单电子还原,形成碳酸酯聚合物。然而,这种机理却无法解释Xu等人在PC和EC还原反应中均测试到单电子还原产物碳酸酯低聚物的试验结果。Tasaki则认为这种差异主要是由于PC在石墨层形成的共嵌物[Li(PC)n]+结构体积大于石墨层的层间距,从而撑开破坏石墨层。而EC体系形成的共嵌物体积小于石墨层层间距,所以不会导致石墨层的破坏。然而,这种机理无法解释分子体积比PC大的溶剂分子界面行为却与EC相近的试验现象。


【成果简介】


近日,来自华南师范大学的邢丽丹博士、李伟善教授与美国陆军试验室许康研究员(共同通讯作者)合作,在Acc.Chem.Res.上发表题为“DecipheringtheEthyleneCarbonate?PropyleneCarbonateMysteryinLi-IonBatteries”的研究论文。他们采用量子化学计算和试验办法相结合,具体研究了锂电池电解液脱溶剂化过程及其与石墨界面相容性的关系,发现锂盐阴离子PF6-是导致PC与EC界面行为差异的最根本原由。当石墨电极电压下降时(发生嵌锂反应,即电池充电过程),溶剂化的锂离子在电场作用下迁移到石墨负极表面。由于此时锂离子溶剂化层体积远大于石墨层层间距,因此在嵌入往日需要发生脱溶剂化。EC基体系锂离子脱溶剂化层时优先脱去EC分子,形成含PF6-的溶剂化层,PF6-参与随后的还原分析,形成富含LiF的稳定SEI膜。然而,PC基体系的锂离子脱溶剂化层时脱去PC分子和PF6-的概率相当,因此参与还原分析的PF6-含量减少,导致形成的分析产物LiF含量低。他们后续设计一系列的试验证明,LiF含量低是导致PC基电解液分析产物无法形成致密稳定SEI膜的根本原由。


【图文导读】


图1.EC和PC基电解液在的电化学行为和结构差异


(a)EC和PC基电解液在石墨电极上的充放电曲线


(b)EC和PC基电解液中嵌入石墨层的可能锂离子溶剂化层结构


图2.电解液中离子溶剂化层对其电化学行为的影响


(a)电喷雾电离质谱法探测离子化层结构


(b)电解液中溶剂比例对其电化学性能的影响


(c)离子化层结构中EC的含量与电解液中EC溶剂含量比例的关系


图3.溶剂化层中锂离子与溶剂分子和阴离子的结合能与溶剂分子数的关系


(a)EC基电解液中锂离子与EC和PF6-的结合能


(b)PC基电解液中锂离子与PC和PF6-的结合能


图4.含PF6-的溶剂化层发生单电子还原后的优化结构


图5.电子亲合能及产物的前线分子轨道能量


(a)含PF6-的溶剂化层电子亲合能


(b)部分主要电解液分析产物的前线分子轨道能量与电子阻隔能力的关系


表1.石墨电极在不同电解液中循环后表面LiF的含量


【小结】


本成果采用理论计算化学与试验办法相结合,阐明了电解液中锂离子溶剂化层脱溶剂化过程对电极/电解液界面性质的紧要影响,指出锂盐阴离子是不是参与还原分析反应是决定了EC基电解液和PC基电解液在石墨电极界面行为截然不同的根本原由。该成果不仅处理了锂电池的长期争执的问题,也为其他高能电池的设计和使用指明了方向。

声明: 本站所发布文章部分图片和内容自于互联网,如有侵权请联系删除

用手机扫描二维码关闭
二维码