锂电池知识

电池知识

锂离子、磷酸铁锂、锰酸锂、新能源

将来锂电池的发展将是如何的

2021-04-26 ryder

便携式电子设备的全球性激增和消费者对更高性能的需求,给公司带来了加速创新的压力。这种创新速度在很大程度上取决于电池的性能,然而,为了开发出性能优越的电池,就非得知道其材料的根本化学成分。要实现这一目标,要先进的原位测量技术,而磁共振波谱学的发展,包括核磁共振(NMR)、电子顺磁共振(EpR)波谱以及磁共振成像(MRI)等成像技术,正在为这一进程铺平道路。


锂电池


由于锂具备高能量密度和高电化学电位,因而使锂电池(LIB)成为世界上最受欢迎的选择之一。自20世纪70年代进行开发以来,LIB已经实现了重大的技术创新,索尼公司于1991年推出了第一款可充电式电池。


可充电电池依靠于电化学反应,通过电解质中的离子和电子在阳、阴两个电极间的运动,化学能被转化为电能,反之亦然。


图1:锂电池工作原理示意图


(图注:Charge充电Discharge放电Electrolyte电极Separator隔膜)


在LIB的第一个充电循环中,当锂离子穿过电解质流向阳极时,其中一些会与电解质的降解产物发生反应,在阳极上形成不溶性沉积物。这些沉积物形成固体电解质相间(SEI),戒备阳极材料分析,对电池的长期运行至关紧要。可传导离子而对电子绝缘的稳定SEI的形成决定了许多性能参数,因此对LIB的研究极具吸引力。


利用NMR研究LIB


NMR技术可以用来研究多种电池体系的具体结构信息(包括电子结构),例如识别中间产物,研究电池材料的动力学特性等等。NMR尤其适合于研究电池材料的紧要组成部分碱金属离子的动力学特性。即使在高度无序的体系中也可利用固体NMR来表征LIB材料的局部结构,阐明材料中各种化学物质的信号变换。锂具有两种NMR活性同位素(6Li和7Li),因而可以笔直研究锂的动力学特性并对锂离子运动进行定量分解。


NMR技术的发展有助于提高对SEI的认识,使研究人员能从多个方面对SEI膜进行分离和定量鉴定。例如,利用7Li和19F魔角旋转(MAS)NMR技术,可以识别并定量研究再充电LIB阳极与电解质之间的SEI膜中氟化锂(LiF)的变化。1NMR办法也可以对枝晶生长进行监测并做定量分解。循环充放电过程中Li谱峰强度的变化与枝晶组织的生长与金属的平滑沉积有关。研究发现,通过原位NMR可以确定,在Li/LiCoO2电池缓慢充电过程中沉积的锂,高达90%是枝状的。2NMR可用于系统地探测电解质添加剂、先进隔膜、电池压力、温度和电化学循环条件等抑制枝晶生长的办法。3再加上对SEI和新型电池材料的原位定量监测,使NMR为创新LIB的设计发挥了关键的推动作用。


EpR是一种互补性技术?


测量电池运行过程中枝晶的形成颇具挑战,但关于替代性LIB设计和材料的继续研究则是必要的。除NMR之外,EpR波谱也非常适合于原位研究金属锂物种的演变。EpR波谱法也被用于对采用金属锂阳极和LiCoO2阴极的LIB中的沉积锂金属进行半定量测试。


EpR成像技术正被用来研究新电池中自由基氧物质的形成和消失与电流、电位、静息时间、电解质或温度之间的函数关系。


利用MRI获取空间信息


除了光谱学之外,MRI也是一种功能强大的非侵入性技术,可以供应LIB的电解质和电极中所发生变化的时间辨别和定量信息。与NMR类似,MRI能够测试并定位锂的微观结构,还具有供应空间信息的神奇优点,从而能定位特定的结构变化。MRI技术在研究新型电池材料和电池设计方面的优点越来越得到认可。其它使用还包括LIB容量衰减研究、大量循环后的电池测试、高应力和加速老化实验。


全固态电池


有关LIB研究的一个最前沿的方向就是从液体电解质到固体电解质的转变。考虑到LIB中发生短路的可能性,液体电解质的易燃性意味着一种安全隐患。多年来,研究人员一直在研究固态电解质来替代液态电解质的使用,这不仅可以提高安全性,还可以为锂金属阳极供应抗枝晶形成的潜力,从而提升能量密度。尽管全固态电池并非一个新概念,但由于其倍率性能和循环性能不佳(可能是由于固体-固体电极-电解质界面上锂离子转移的高内阻),迄今为止其进展一直受到妨碍[4]。5因此,研究界面反响应电荷传输对发挥这些电池的潜力至关紧要,而NMR正是这方面的理想选择。


NMR也有助于表征潜在的固体电解质材料,如依靠于离子传输的陶瓷。NMR结合电导率测量可用于分解离子动力学特性,并有助于阐明局部结构与动力学参数之间的关系。


将来的电池


很分明,以往40年中分解技术的发展对电池行业萌生了重大影响。电子显微镜和光学显微镜等技术供应的高辨别率成像往往局限于表面成像,难以进行定量解读。NMR和EpR波谱都是具有定量能力的非侵入性办法,目前正在持续深入研究,以提高其灵巧度和辨别率。


深入知道可能的替代电极材料、电解质成分(锂盐、溶剂和添加剂)以及SEI和枝晶形成的过程控制,正在为具有更高能量密度的、更安全的LIB铺平道路。高容量、高工作电压的阴极等新材料的迅速发展,对电解质和相间化学提出了挑战。这种创新正与EpR、NMR光谱和MRI等先进分解技术相结合,以确保LIB研究可持续供应将来的储能处理方案。

声明: 本站所发布文章部分图片和内容自于互联网,如有侵权请联系删除

用手机扫描二维码关闭
二维码