电池知识
锂离子、磷酸铁锂、锰酸锂、新能源
电池知识
锂离子、磷酸铁锂、锰酸锂、新能源
在带变压器的开关电源拓扑中,开关管关断时,电压和电流的叠加引起的损耗是开关电源损耗的主要部分,同时,由于电路中存在杂散电感和杂散电容,在功率开关管关断时,电路中也会出现过电压并且萌生振荡。如果尖峰电压过高,就会损坏开关管。同时,振荡的存在也会使输出纹波增大。为了降低关断损耗和尖峰电压,需要在开关管两端并联缓冲电路以改善电路的性能。
缓冲电路的主要作用有:一是减少导通或关断损耗;二是降低电压或电流尖峰;三是降低dV/dt或dI/dt。由于MOSFET管的电流下降速度很快,所以它的关断损耗很小。虽然MOSFET管仍旧使用关断缓冲电路,但它的作用不是减少关断损耗,而是降低变压器漏感尖峰电压。本文主要针对MOSFET管的关断缓冲电路来进行讨论。
在设计RC缓冲电路时,非得熟悉主电路所采用的拓扑结构情况。图l所示是由RC组成的正激变换器的缓冲电路。图中,当Q关断时,集电极电压开始上升到2Vdc,而电容C限制了集电极电压的上升速度,同时减小了上升电压和下降电流的叠加,从而减低了开关管Q的损耗。而在下次开关关断之前,C非得将已经洋溢的电压2Vdc放完,放电路径为C、Q、R。
假设开关管没带缓冲电路,图1所示的正激变换器的复位绕组和初级绕组匝数相同。这样,当Q关断瞬间,储存在励磁电感和漏感中的能量释放,初级绕组两端电压极性反向,正激变换器的开关管集电极电压迅速上升到2Vdc。同时,励磁电流经二极管D流向复位绕组,最后减小到零,此时Q两端电压下降到Vdc。图2所示是开关管集电极电流和电压波形。可见,开关管不带缓冲电路时,在Q关断时,其两端的漏感电压尖峰很大,萌生的关断损耗也很大,严重时很可能会烧坏开关管,因此,非得给开关管加上缓冲电路。
当开关管带缓冲电路时,其集电极电压和电流波形如图3所示(以正激变换器为例)。
在图1中,当Q开始关断时,其电流开始下降,而变压器漏感会阻止这个电流的减小。一部分电流将持续通过将要关断的开关管,另一部分则经RC缓冲电路并对电容C充电,电阻R的大小与充电电流有关。Ic的一部分流进电容C,可减缓集电极电压的上升。通过选取足够大的C,可以减少集电极的上升电压与下降电流的叠加部分,从而显著降低开关管的关断损耗,同时还可以抑制集电极漏感尖峰电压。图3中的A-C阶段为开关管关断阶段,C-D为开关管导通阶段。在开关管关断前,电容C两端电压为零。在关断时刻(B时刻),C会减缓集电极电压的上升速度,但同时也被充电到2Vdc(在忽略该时刻的漏感尖峰电压的情况下)。电容C的大小不仅影响集电极电压的上升速度,而且决定了电阻R上的能量损耗。在Q关断瞬间,C上的电压为2Vdc,它储存的能量为0.5C(2Vdc)2焦耳。如果该能量全部消耗在R上,则每周期内消耗在R上的能量为:
对限制集电极上升电压来说,C应当越大越好;但从系统效率出发,C越大,损耗越大,效率越低。因此,非得选择适宜的C,使其既能达到一定的减缓集电极上升电压速度的作用,又不至于使系统损耗过大而使效率过低。
在图3中,由于在下一个关断开始时刻(D时刻)非得保证C两端没有电压,所以,在B时刻到D时刻之间的某时间段内,C非得放电。实际上,电容C在C-D这段时间内,也可以通过电阻R经Q和R构成的放电回路进行放电。因此,在选择了一个足够大的C后,R应使C在最小导通时间ton内放电至所充电荷的5%以下,这样则有:
式(1)声明R上的能量损耗是和C成正比的,因而非得选择适宜的C,这样,要怎么样选择C就成了设计RC缓冲电路的关键,下面解析一种比较实用的选择电容C的办法。
事实上,当Q开始关断时,假设最初的峰值电流Ip的一半流过C,另一半依然流过逐渐关断的Q集电极,同时假设变压器中的漏感保持总电流依然为Ip。那么,通过选择适宜的电容C,以使开关管集电极电压在时间tf内上升到2Vdc(其中tf为集电极电流从初始值下降到零的时间,可以从开关管数据手册上查询),则有:
因此,从式(1)和式(3)便能计算出电容C的大小。在确定了C后,而最小导通时间已知,这样,通过式(2)就可以得到电阻R的大小。
2.1电路设计
图4所示是一个带有RC缓冲电路的正激变换器主电路。该主电路参数为:Np=Nr=43匝。Ns=32匝,开关频率f=70kHz,输入电压范围为直流48~96V,输出为直流12V和直流0.5A。
开关管Q为MOSFET,型号为IRF830,其tf一般为30ns。Dl、D2、D3为快恢复二极管,其tf很小(通常tf=30ns)。本设计的输出功率p0=V0I0=6W,假设变换器的效率为80%,每一路RC缓冲电路所损耗的功率占输出功率的1%。这里取Vdc=48V。
2.2试验分解
下面分两种情况对该设计进行试验分解,一是初级绕组有缓冲,次级无缓冲;二是初级无缓冲,次级有缓冲。
(1)初级绕组有缓冲,次级无缓冲
该试验测量的是开关管Q两端的漏源电压,试验分以下两种情况:
第一种情况是RS1=1.5k,CS1不定,输入直流电压Vdc为48V。
其试验结果为:在RS1不变的情况下,CSl越大,虽然开关管Q的漏感尖峰电压无分明降低,但它的漏源电压变得平缓了,这说明在初级开关管的RC缓冲电路中,CSl应当选择比较小的值。
第二种情况是CSl=33pF,RS1不定,输入直流电压Vdc为48V。其结果是:当CS1不变时,RS1越大,开关管Q的漏感尖峰电压越大(增幅比较小)。
可见,RC缓冲电路中,参数R的大小对降低漏感尖峰有很大的影响。在选定一个适宜的C,同时满足式(2)时,R应当选择比较小的值。
(2)次级绕组有缓冲,初级无缓冲
本试验以D2、D3的阴极作为公共端来测量快恢复二极管的端压,其结果是,当R不变时,C越大,二极管两端的漏感尖峰越小。同时理论上,如果C为无穷大时,二极管两端的电压中就没有漏感尖峰。而在实际中,只需让二极管两端电压的漏感尖峰电压在其端压峰值的30%以内就可以满足要求了,这样同时成本也不会太高。
2.3设计参数的确定
通过试验分解可见,在次级快恢复二极管的RC缓冲电路中,当选择了适当大小的电容C时,在满足式(2)的情况下,电阻R应当选择得越小越好。最终经过实际调试,本设计选择的RC缓冲电路参数为:
初级:RS1=200,CSl=100pF
次级:RS2=RS3=5l,CS2=CS3=1000pF
本设计的初级开关管的RC缓冲电路中的C值虽然选得略微比计算值大一些,但损耗也不是很大,因此还是可以接受的。相对初级而言,次级快恢复二极管的RC缓冲电路中的C值就选得比计算值大得多,系统的损耗必然增大。但是,并联在快恢复二极管两端的RC缓冲电路主要是为了改善系统输出性能,因此选择比较大的C值虽然会使系统的整体效率降低,但二极管两端的漏感尖峰就减小了很多,而且输出电压的纹波也可以达到指定要求。
依据以上给出的公式,可以很好而且很方便地选择出适宜的RC缓冲电路。但是在工程使用中,应当依据系统设计的性能指标,通过实际调试才能得到真正适宜的参数。有时候,为了达到系统的性能指标,牺牲一定的效率也是必要的。总之,在设计RC缓冲电路参数时,非得综合考虑系统性能和效率,最终选择适宜的RC参数。
声明: 本站所发布文章部分图片和内容自于互联网,如有侵权请联系删除