锂电池知识

电池知识

锂离子、磷酸铁锂、锰酸锂、新能源

高压锂电池发展受限?这几款电解液添加剂带来新活力

2021-03-09 ryder

一般锂离子池电解液在高电压下的氧化分析限制了高压锂电池的发展,为知道决这一问题,要设计、合成新型的耐高压电解液或寻找适宜的电解液添加剂。然而从经济效益考虑,发展适宜的电解液添加剂来稳定电极/电解液界面更加受到研究者们的酷爱。本文中解析了高压锂电池电解液添加剂方面的研究进展,并按照添加剂的种类将其分为6部分进行探讨:含硼类添加剂、有机磷类添加剂、碳酸酯类添加剂、含硫添加剂、离子液体添加剂及其它类型添加剂。


含硼添加剂


含硼化合物常常作为添加剂使用到不同正极材料的锂电池中,在电池循环过程中,很多含硼化合物会在正极表面形成保护膜,来稳定电极/电解液之间的界面,从而提高电池性能。考虑到含硼化合物的这一神奇性能,众多学者开始尝试将其使用到高压锂电池中,来加强正极界面稳定性。


Li等将三(三甲基烷)硼酸酶(TMSB)使用到以Li[Li0.2Mn0.54Ni0.13Co0.13]O2作正极材料的高压锂电池中,发现当有0.5%(质量分数)TMSB添加剂存在时,循环200圈后容量保持74%(电位范围2-4.8V,充放电倍率为0.5C),而没有添加剂存在时,容量保持仅为19%。


为知道TMSB对正极表面修饰的用途机制,ZUO等将TMSB添加到LiNi0.5Co0.2Mn0.3O2石墨全电池中,并分别对正极材料进行了XpS与TEM分解,得到下图所示的结论:在没有添加剂存在时,随着循环次数的新增,会逐渐在正极表面形成一层有LiF存在的正极电解液界面(CEI)膜,这层膜较厚而且阻抗较高;加入TMSB后,缺电子的含硼类化合物会提高正极表面LiF的溶解度,形成的SEI膜较薄,阻抗较低。


除了TMSB,现如今使用到高压锂电池中的含硼类添加剂还包括双草酸硼酸锂(LiBOB)、双氟草酸硼酸锂(LiFOB)、四甲基硼酸酯(TMB)、硼酸三甲酯(TB)以及三甲基环三硼氧烷等,这些添加剂在循环过程中会比电解液溶剂优先被氧化,形成的保护性膜倾覆到正极表面,这层保护性膜具有良好的离子导电性,能抑制电解液在随后的循环中发生氧化分析以及正极材料结构的破坏,稳定电极/电解液界面,并最终提高高压锂电池的循环稳定性。


有机磷添加剂


依据前线轨道能量与电化学稳定性的关系:分子的HOMO越高,轨道中的电子越不稳定,氧化性越好:分子的LUMO越低,越容易得电子,还原性越好。


因此,通过计算添加剂分子与溶剂分子的前线轨道能量,可以从理论上判断添加剂的可行性。SONG等利用Gaussian09程序,采用密度泛函理论(DFT)在B3LYp/6-311+(3df,2p)水平下分别对三(2,2,2-三氟乙基)亚磷酸酯(TFEp)、三苯基亚磷酸酯(Tpp)、三(三甲基硅基)亚磷酸酯(TMSp)以及亚磷酸三甲酯(TMp)类添加剂以及溶剂分子进行优化,得到相应的优点构象,并对其进行了前线轨道分解。下图可以看出,这些亚磷酸酯化合物的HOMO能量远高于溶剂分子,声明亚磷酸酯类化合物比溶剂分子具有更高的氧化性,在正极表面能优先发生电化学氧化,形成SEI膜倾覆在正极表面。


除了亚磷酸酯类添加剂,目前所用的有机磷类添加剂还包括磷酸酯类化合物。XIA等将三烯丙基磷酸酯(TAp)添加剂使用到Li[Ni0.42Mn0.42Co0.16]O2(NMC442)石墨全电池中,发现当有TAp存在时会显著提高库仑效率,长时间循环后,依然具有很高的容量保持。XpS结果声明,在循环过程中,烯丙基可能会发生交联电聚合反应,得到的产物倾覆到电极表面,形成平均的SEI膜。


碳酸酯类添加剂


含氟皖基(pFA)化合物具有很高的电化学稳定性,同时具备疏水性与疏油性的特性,当pFA添加到有机溶剂中,疏溶剂的pFA会凝聚到一起形成胶团。由于pFA的这一特性,ZHU等尝试将全氟烃基(下图中TEM-EC、pFB-EC、pFH-EC、pFO-EC)取代的碳酸亚乙酯添加到高压锂电池电解液中,关于Li1.2Ni0.15Mn0.55Co0.1O2石墨电池,当加入0.5%(质量分数)的pFO-EC后,电池在长时间循环过程中性能分明提高,这紧要是因为添加剂在循环过程中形成了双层的钝化膜,同时减少电极表面的降解与电解液的氧化分析。


含硫添加剂


近年来,将有机磺酸酯作为添加剂使用到锂电池中的报道很多。pIRES将1,3-丙磺酸内酯(pS)加入到高压锂电池电解液中,有效抑制了电极表面副反应的发生以及金属离子的溶解。ZHENG等用二甲磺酰甲烷(DMSM)作为高压LiNil/3Col/3Mn1/3O2石墨电池电解液添加剂,XpS、SEM以及TEM分解结果声明,MMDS的存在对正极SEI膜具有很好的修饰用途,即使在高压下也能显著降低电极/电解液界面阻抗,提高正极材料的循环稳定性。此外,HUANG等分别研究了三氟甲基苯硫醚(pTS)添加剂在高压锂电池室温及高温下的循环性能。理论计算数据与试验结果分解得出,在循环过程中pTS比溶剂分子优先被氧化,形成的SEI膜提高了电池在高电压下的循环稳定性。此外,一些噻吩及其衍生物也被考虑作为高压锂电池添加剂使用,当加入这些添加剂后,会在正极表面形成聚合物膜,戒备了电解液在高压下的氧化分析。


离子液体添加剂


离子液体是一种低温熔融盐,因其具备蒸汽压低、电导率高、不易燃、热稳定及电化学稳定性高等优势而被广泛使用到锂电池中。


目前已报道的文献紧要是将纯离子液体作为一般锂电池电解液使用,我国科学院过程工程研究所李放放课题组考虑到离子液体神奇的物理化学性质,尝试将其作为添加剂使用到高压锂电池中,如分别将4种烯烃取代咪唑双(三氟甲基磺酰)亚胺离子液体添加到了1.2mol/L的LipF6/EC/EMC电解液中,并对其进行了循环性能探测,见下图。结果声明,首次充放电效率都分明提高,尤其添加3%(质量分数)的[AVlm][TFSI]离子液体时,电池的放电容量和循环性能最好。


此外,BAE等用双(三氟甲基磺酰)亚胺三乙基(2-甲氧乙基)季磷盐(TEMEp-TFSI)作有机电解液添加剂,发现TEMEp-TFSI可以有效提高Li/LiMn1.5Ni0.5O4半电池的容量保持率,同时可降低电解液的可燃性。TEM和XpS的结果声明,添加剂在LNMO表面形成了稳定保护膜,有效抑制了电解液的分析。


其他添加剂类型


除了上面提到的几种类型的添加剂外,CHEN等尝试用有机硅类化合物作高压锂电池添加剂,当向电解液中加入0.5%(质量分数)的烯丙氧基三甲硅(AMSL)时,电池的循环性能与热稳定性分明提高;SEM、XpS及FTIR分解结果声明,AMSL会在正极表面形成保护性膜:另外通过对石墨负极进行循环性能以及CV探测,发现加入添加剂后放电容量会轻微新增,与不含添加剂时的CV曲线相比,加入AMSL后会在原来还原峰,相对较高的电压处出现一个新的还原峰,声明AMSL会优先被还原,形成稳定的SEI膜倾覆到石墨负极的表面,抑制了电解液在电极表面进一步的还原分析,加强了循环稳定性,由于AMSL能同时在LiNi0.5Mn1.5O4与石墨负极形成SEI膜来稳定电极界面,因此其有望成为一种理想的添加剂得到更进一步的使用。一些苯的衍生物也可用作高压锂电池添加剂,KANG等将1,3,5-羟基苯(THB)加入到碳酸酯类电解液中,在高温、高压下表现出了良好的热稳定性和电化学稳定性。


总结


传统使用的有机碳酸酯类电解液在高电压下继续的氧化分析以及正极材料过渡金属离子的溶解问题,限制了高压正极材料的容量发挥和使用,发展高压电解液添加剂是改善电池性能既经济又有效的办法。现今所报道的高压添加剂在循环过程中一般会比溶剂分子优先氧化,在正极表面形成钝化膜,稳定电极/电解液界面,最终实现电解液能在高压下稳定存在。


从目前公开报道的国内外研究进展来看,在高压电解液的开发方面,引入高压添加剂一般可以获得4.4-4.5V的电解液。但是关于富锂、磷酸钒锂、高压镍锰等正极材料,由于可充电电压达到了4.8V甚至5V以上,非得开发可耐更高电压的电解液才能获得更高的能量密度。

声明: 本站所发布文章部分图片和内容自于互联网,如有侵权请联系删除

用手机扫描二维码关闭
二维码