电池知识
锂离子、磷酸铁锂、锰酸锂、新能源
电池知识
锂离子、磷酸铁锂、锰酸锂、新能源
一、正极材料的结构变化
正极材料是锂离子的紧要来源,当锂离子从正极中脱出时候,为了维持材料电中性状态,金属元素必然会被氧化到达一个高的氧化态,这里就伴随了组分的转变。组分的转变容易导致相转移和体相结构的变化。电极材料相转变可以引起晶格参数的变化及晶格失配,由此出现的诱导应力引起晶粒的破裂,并引发裂纹的传播,造成材料的结构发活力械破坏,从而引起电化学性能衰减。
二、负极材料结构
商业化锂电池常用的负极材料有碳材料、钛酸锂等,本文以典型负极石墨进行分解。锂电池容量的衰减第一次发生于化成阶段,在这个阶段会在负极表面形成SEI,消耗部分锂离子。
随着锂电池使用,石墨结构的变化也会造成电池容量下降。LIU等研究了LiFePO4/C电池的容量衰减机制,同样适用于三元锂电池,研究发现循环后的碳材料虽然保持了石墨的形貌结构,但是其晶面的半高宽变大,导致c轴方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的SEI膜并促使SEI膜的修复,SEI膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。
三、电解液的氧化分析与界面反应
电解液的性质显著影响锂电池的比容量、寿命、倍率充放电性能、工作温度范围以及安全性能等。电解液紧要包括溶剂、电解质和添加剂三个部分。溶剂的分析、电解质的分析都会导致电池容量的损失。电解液的分析和副反应是锂电池容量衰减的紧要因素,无论采用何种正负极材料、何种工艺,随着锂电池循环使用,电解液的分析及与正负极材料间发生的界面反应都会造成容量的衰减。
通过引入Co减少阳离子混合占位情况,有效稳定材料的层状结构,引入Mn则可以降低成本提高材料的安全性和稳定性。三元材料具有更优异的电化学性能和稳定性,已经被世界主流锂电厂商接受,使用于电动车、3C等范畴。四、锂电池使用条件
声明: 本站所发布文章部分图片和内容自于互联网,如有侵权请联系删除